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Abstract

We give a concise summary on the technical history of visualizing implicit locus equations in
the widely used dynamic geometry system GeoGebra. We mainly focus on the “draggable locus”
equation, introduced in GeoGebra 5 (2014), and the dynamic envelopes. We discuss how user
interface improvements (the LocusEquation and Envelope tools in GeoGebra Discovery), backend
updates (the Giac subsystem) and algebraic experiments (to automatically exclude degeneracy)
lead to easy study of caustics of a circle or a parabola in the classroom.

1 Introduction
At CADGME 2014 (Halle, Germany), Francisco Botana and the author presented a novel way of
visualizing locus and envelope curves. The “draggable locus” feature was introduced in GeoGebra
5 – the authors showed how the LocusEquation and Envelope commands can be used to bring
algebraic curves closer to the students.

As a closing remark in that past presentation, Sander Wildeman’s remark was cited: “Once you
have written an article about caustics you start to see them everywhere.” Indeed – and this fact
encouraged us to do further developments on the topic! Since 2014 we continuously enhance our
approaches to support the study of locus and envelope equations for classroom situations as easily as
possible. Our work consisted of

• user interface improvements (like the availability of the above commands as toolbar icons),

• backend updates (to speed up the underlying elimination process in the background)

• and algebraic experiments (to find the best suitable formula to express the tangents of conics in
general, to obtain fast computational results).

Our research led finally to make it possible to obtain non-trivial results in a user friendly way. As an
example of these improvements, we are going to study the caustics of a circle or a parabola in the
second part of this paper. Despite our results are not new from the mathematical point of view, they
are novel from the educational approach.
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2 A brief history of “draggable loci”
We recall some of the milestones of the long road to achieve difficult algebro-geometric results in a
simple way. The very beginnings include Reinhard Oldenburg’s Feli-X and FeliX systems [15, 16].
Their first version was available in March 2004. It provided a simple user interface to work with
planar geometric constructions. They could be expressed by direct algebraic inputs like the command
addEquation[yC[A]==0] or geometric declarations like B=addObject["point",0,4]. The out-
put as an algebraic equation was provided algebraically and also graphically. Feli-X used Mathe-
matica as its backend but Oldenburg stated clearly that several schools could not afford Mathematica
licenses – therefore a free alternative computer algebra system (CAS) should be considered for the
long term.

In fact, an earlier work [5] (January 2003) published by Francisco Botana and José Luis Valcarce
already described a similar system. The software tool Lugares was able to use a free CAS as its main
backend: CoCoA. A later publication [6] by these authors (July 2004) described the software tool
GDI which could compute and plot the envelope equation of a family of lines parametrized by the
positions of a point on a geometric object, by providing a simple user interface.

Botana continued to work on making these concepts available for a wider audience. As of 2010
it turned out that the freely available GeoGebra system becomes very popular among end users in
educational communities. Hence he published the LADucation system at CADGME 2010 (Hluboká
nad Vltavou, Czech Republic1) – it was able to import GeoGebra files and manipulate them via a web
service. LADucation internally used a CoCoA installation on the server.

A collaboration between a research group in algebraic geometry, led by Tomás Recio, and the Geo-
Gebra Team, led by Markus Hohenwarter, seemed to be a fruitful cooperation at this point. Botana’s
concept on outsourcing the heavy computations to an external system remained an important part of
the project. The first publicly available version was implemented by a student Sergio Arbeo in the
frame of the Google Summer of Code (GSoC) 2010, advised by Miguel Á. Abánades, by using Heinz
Kredel’s Java Algebra System (JAS) on the top of GeoGebra 4.0. This first version already provided
the LocusEquation command. It heavily relied on another GSoC project that aimed at contour and
implicit plotting, programmed by Philipp Birklbauer and advised by Darko Drakulic, in the same
year.

The first implementation had some difficulties with speed. It turned out that the implementation
of Gröbner basis computations is the main bottleneck. Finally, several changes in GeoGebra’s CAS
backend (Reduce in 4.2, 2011; SingularWS [3] and Giac in 4.4, 2013; Giac in 5.0 [10], 2014) and
some substantial speedups of Giac’s internal command eliminate led to major visual improvements
that made fast animations possible when the inputs were changed via a dragging move [9].

Meanwhile the Envelope command was added to GeoGebra 5.0 by Botana and the author [4]. It
heavily exploited Giac’s fast elimination algorithm. Also, a general geometric prover subsystem was
developed by Simon Weitzhofer and the author in 2011, and supported by some other researchers
in the following years [2]. To avoid implementing similar ideas multiple times, the commands Lo-
cusEquation, Envelope and Prove were unified in 2017 by the author. As a result, GeoGebra was
extended with a general geometric prover subsystem called GeoGebra Automated Reasoning Tools
[12]. This subsystem was thoroughly tested, documented and further improved by additional re-

1The slides for Botana’s talk are available at http://home.pf.jcu.cz/~cadgme2010/proceedings/botana/F
rancisco_Botana_talk.pdf.
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searchers, among others: M. Pilar Vélez, Pavel Pech, Roman Hašek and Thierry Dana-Picard. This
fruitful collaboration among several researchers yielded to further improvements like

• automated removal of some degenerated components ([11], 2019),

• toolbar access of the LocusEquation and Envelope commands (2020),

• attaching points to arbitrary algebraic curves that are defined by the user via a polynomial
equation ([7], 2020).

In fact, some of the latest improvements are not yet official parts of GeoGebra. Instead, an exper-
imental version called GeoGebra Discovery2 is launched to make it possible for the researchers to try
out these novel techniques in a preliminary version that can be considered “unstable” for the every
day use. After being stable enough and confirmed by the GeoGebra Team, some of these new features
may be supported officially by the mainstream version of GeoGebra as well.

Now in 2022, the locus equation and envelope algorithms are ready to play a substantial role in
helping students to experiment with algebraic curves, up to eventually a degree of 20 for the studied
polynomials. In the second part of the paper some simple ways will be presented on how to get the
caustics of a circle or a parabola. This can be fruitful not just for mathematics classes but for STEAM
projects (for example, with optical applications in physics). Also, the underlying mathematical and
technological details will be explained at some extent. Finally, as future plan, the easy study of
caustics of an ellipse or hyperbola will be mentioned – even if these tasks are too difficult yet for the
current stage of the project.

3 Locus and its equation
The “draggable locus” feature appeared in certain software systems after the millecentenary. It is
based on locus equations, and it therefore has a symbolic property. On the other hand, the appearance
of geometric locus in computer programs is an older feature, and it has a numerical property from the
computational view.

The first exhaustive work on presenting the benefits of geometric loci is perhaps the doctoral
dissertation [8] by Ulrich Kortenkamp. Its chapter 10.4 “Exploring Geometry with Loci” lists several
applications of drawing a geometric locus. In a later work [18] by Kortenkamp and Jürgen Richter-
Gebert we find the following definition of a locus:

A locus is the trace of a point under the movement of another point. A locus is defined
by three objects:

• The mover, a free element whose movement drives the generation of the locus.

• The road, an element incident to the mover. The mover will be moved along the
road.

• The tracer, the element whose trace is calculated and presented as a geometric locus.
2Available at https://github.com/kovzol/geogebra-discovery
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In some software systems (like GeoGebra) the road is called path.
When computing the equation of a locus, GeoGebra uses computational algebraic geometry to

manipulate the equations that describe the coordinates of the points in the figure. The obtained out-
put is always an algebraic curve (or the union of discrete points) which is computed by—roughly
speaking—eliminating some variables in the algebraic translation of the geometric construction.

The process to get the locus equation is performed by denoting the locus point by (x, y), and
the other points of the construction by (vi, vi+1) for some i, and the relationships among the points
are described by polynomial equations fj(v1, v2, . . . , vn, x, y) = 0. Now the goal is to eliminate all
variables but x and y from the ideal ⟨fj⟩.

In fact, similar steps can be used to compute an envelope of a family of curves. We start with the
same procedure, but we define the locus point virtually by putting it on the object which is tangent to
the envelope. Now by computing the determinant of the Jacobian matrix

D =

∣∣∣∣∣∣∣∣∣
∂f1
∂v1

∂f2
∂v1

· · · ∂fn
∂v1

∂f1
∂v2

∂f2
∂v2

· · · ∂fn
∂v2...

... . . . ...
∂f1
∂vn

∂f2
∂vn

· · · ∂fn
∂vn

∣∣∣∣∣∣∣∣∣
an extra polynomial fn+1 = D will be obtained. As a final step, we eliminate all variables but x and
y from the ideal ⟨fj⟩.

GeoGebra (since 2016) also supports the computation of implicit locus curves [1]. This means the
algebraic discovery of the path curve which is prescribed by some expected geometric property of the
figure. In this case the sought mover point is denoted by (x, y), and the other points of the construction
by (vi, vi+1). The relationships among the points are described by the polynomial equations fj = 0:
they are the hypotheses. The algebraic translation of the assumed implicit condition (the thesis) is
also added to the polynomials. Now by eliminating all variables but x and y from the ideal ⟨fj⟩ the
implicit locus will be obtained.

In GeoGebra, technically, dynamic plotting of a locus or envelope equation is performed as a
mixture of symbolic and numerical computations that are shown in Figure 1. The computationally
heavy part is to eliminate the variables from the ideal obtained during the algebraization process. If
the user drags one of the free points during the use of a dynamic applet, a number of consecutive
eliminations must be performed. When using an efficient algorithm, it is possible to achieve a high
number of symbolic computations within a second. This leads to a continuous movement on the
screen – unless the input construction is too complicated and it results in a heavy computation. We
recall that elimination can be in worst case doubly exponential in the number of variables [14] because
the underlying algorithm uses Gröbner bases in the background.

Finally, here we refer to the paper [13] by Peter Lebmeir and Richter-Gebert that proposes a
different way to compute the locus equation. This approach starts with a collection of sample points
that are graphically constructed when moving the mover point. The algorithm then looks for a curve,
that goes through the sample points, of bounded degree, to establish a rigorous bound on the degree of
the locus equation. This sophisticated method, however, does not seem to be widespread in practice.
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Figure 1: Workflow of plotting a locus or envelope equation in GeoGebra

4 Caustics of a conic

4.1 The case of the circle
According to mathcurve.com, the caustics by reflection of circles are the envelopes of the reflection
of rays, emitted by a light source placed at finite or infinite distance, by a circle. It is well known how
to classify these curves:

• in the finite cases we usually get a sextic curve,

– if the light source is outside the circle, then it is a nephroid curve, and

– inside a circle it is still a sextic but it looks differently (Fig. 2).

– If the light source is on the circle, we get a cardioid of degree 4 (Fig. 3).

• Otherwise, if the light source is placed at infinite distance, we get a nephroid again (Fig. 4).

We emphasize that the method we use in GeoGebra differs from the usual parametric way. We use
just elimination to get the algebraic output before the plotting step. This explains why the case of the
cardioid results in an extra degenerate linear component that is tangent to the circle and the cardioid
at the point of light source (Fig. 3).

Figures 2, 3 and 4 use similar notations which will be summarized here quickly. The circle is
denoted by c and defined with midpoint M and circumpoint C. The light source S is explicitly given
in Figures 2 and 3, but it is created dynamically in Figure 4 by setting up the direction of the light
first via a vector v⃗ =

−−→
OV . In each figure we use a tangent point T that is attached to circle c and

designates the mirror m accordingly. In Figure 4 we create point S to have
−→
ST = v⃗. Now we can

get point S ′ as the reflection of S about m in all three setups. By reflecting S ′ about T we get the
technical point S ′′ so that it is possible to graphically present the segment ST and then the ray TS ′′

which together show the beam of the light.
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Figure 2: A caustic of a circle, the light source is placed inside

Figure 3: A caustic of a circle, the light source is placed on the circle
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Figure 4: A caustic of a circle, the light source is placed at infinite distance

In the mathematical sense we simply use the family of lines (or rays3) TS ′ (which is the same as
the family of lines S ′′T ) and compute the envelope n tangent to these lines. This makes us to compute
and plot the caustics of a circle in a very simple way in GeoGebra, see Table 2. In fact, only steps 1–9
are required to plot the caustic, the remaining steps are just explaining the optical details. Step 9 as a
toolbar icon is supported only in GeoGebra Discovery – the corresponding command must be used in
the mainstream version of GeoGebra. We highlight that the whole construction can be built by using
only the mouse – no keyboard input is required!

Figure 5: A caustic of a circle in a cup of coffee – the right figure emphasizes the appearing curves
after an automatic edge-detection
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No. Name Toolbar Icon Description

1 Point M
2 Point C
3 Circle c Circle through C with center M
4 Point S
5 Point T Point on c

6 Line m Tangent to c through T

7 Point S ′ S mirrored at m
8 Ray r′ Ray through T , S ′

9 Implicit Curve n Envelope(r′, T )
10 Segment r Segment S, T
11 Point S ′′ S ′ mirrored at T
12 Ray r′′ Ray through T , S ′′

Table 2: Easy construction of caustics of a circle, the light source is at finite point

Figure 6: An outdoor activity in Dubrovnik, Croatia, demonstrating sound transmission via two
parabolic mirrors: the mirrors are made of yellow metal disks and their foci are highlighted with
blue circular rings
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Figure 7: Geometric setup for the tangent of a parabola

Application of the obtained results is very common in every day life. Objects that have a circular
cross-section can usually be observed that they behave as mirroring surfaces. Inside them, eventually
on the bottom of a cup or a bucket, or in a liquid material (maybe in the water that fills the bucket), the
caustic can be seen, sometimes very sharply. Figure 5 shows one photo taken recently by the author
– the half of a nephroid curve can be detected easily.

We omit the equation system that was used to create the envelope curves. We emphasize, on
the other hand, that a smooth animation of the curves can be achieved on a recent PC: on an Intel(R)
Core(TM) i7-4770 CPU @ 3.40GHz (Ubuntu Linux 22.04) we managed to get 14.3 frames per second
(FPS) for the finite point case and 11.5 FPS for the infinite one.

4.2 The case of the parabola
It is well known that in the case of the parabola we can have a unique behavior of reflection when
the light source is put in the focus. In this case the reflected rays are all parallel lines. An important
application of this fact is data transmission (or broadcasting) via parabolic mirrors: the sender (and/or
the receiver) needs to be in the focus of a parabola so that the direction of transmission will be
orthogonal to the directrix (Fig. 6).

Now we continue with a general position of the light source (Fig. 7). We assume that the parabola
is given with focus F and directrix d (which is defined with line points D1 and D2). Let T be a
tangent point of the parabola. We are searching for a point M such that MT is the tangent line of the
parabola.

We give a list of geometric properties that should be fulfilled to describe the setup geometrically:

1. D1, D2 and F ′ are collinear.

2. F ′T and D1D2 are orthogonal.

3. FT = F ′T .

4. M is the midpoint of FF ′.
3Lines are algebraic closures of rays. In algebraic geometry we deal with polynomial equations, so we cannot distin-

guish between a line or its infinite subsets. Similarly, when removing a point from a conic, we cannot distinguish between
the full conic and the object we obtain after removing that point.
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5. F , F ′ and T should not be collinear.

After several attempts, the following equations seem to be a fruitful list to describe the setup
algebraically:

det

d1x d1y 1
d2x d2y 1
f ′
x f ′

y 1

 = 0, (1)

(f ′
x − tx)(d1x − d2x) + (f ′

y − ty)(d1y − d2y) = 0, (2)

(fx − tx)
2 + (fy − ty)

2 = (f ′
x − tx)

2 + (f ′
y − ty)

2, (3)

mx =
fx + f ′

x

2
,my =

fy + f ′
y

2
, (4)

t · det

fx fy 1
f ′
x f ′

y 1
tx ty 1

 = 1. (5)

Here (4) consists of two equations for the two coordinates of M . Also, in (5) we deny the equality
by introducing a new variable: this technique is well-known in algebraic geometry to express certain
inequalities (it is also known as Rabinowitsch’s trick [17]).

We highlight that this set of equations is not the only way to describe the setup geometrically or
algebraically. But this seems to be a useful way, because it allows us to obtain the envelope curve
when the tangent line MT is changing dynamically. In fact, the most important equation to explain is
(5): if we omit it, we allow T to be the vertex of the parabola, and this is to be avoided, because this
would imply M = T and no line MT would be exactly defined: each line going through the vertex
would be allowed. Therefore, when (5) is not explicitly stated, an infinite amount of lines would be
introduced and this would prevent us from getting the correct envelope equation! On the other hand,
even if we exclude the presence of the vertex in the study, we still get the correct envelope, because
it corresponds to an algebraically closed set. In other words: by considering the input without the
vertex, we get a geometric output that may lack of some points, but the algebraic closure of that
output is still the correct, full envelope.

Figures 8, 9 and 10 show the rich geometry of different cases when the light source is

• inside the parabola,

• on it, or

• outside it.

In the first and third cases we get a sextic curve, while in the second one a quartic curve will be
obtained (together with an extra degenerate linear component that is tangent to the parabola and the
quartic).

In the case of infinite distance we get that the output is cubic – unless the direction of parallel lines
is orthogonal to the directrix (in this case we obtain the focus F as a single point of the envelope, as
expected). See Figures 11 and 12. In fact, we obtain a Tschirnhausen cubic in the general case [19].

The Electronic Journal of Mathematics and Technology, Volume 17, Number 3, ISSN 1933-282378

194



Figure 8: A caustic of a parabola, the light source is placed inside

Figure 9: A caustic of a parabola, the light source is placed on the parabola
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Figure 10: A caustic of a parabola, the light source is placed outside

Figure 11: A caustic of a parabola, the light source is at infinite distance, general case
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Figure 12: A caustic of a parabola, the light source is at infinite distance, “orthogonal” case

Finally we provide here the construction steps how the last two cases were built by using GeoGe-
bra Discovery. In Table 4 a list of 17 steps are given (in fact, the last three steps are just explaining
the optical details). Only one of them (step 10) requires the use of the keyboard. This only step can
be worked around by using a line o (given with free points O1 and O2) and attaching the point S to
it, then projecting S orthogonally to the parabola to get the tangent point T (see Figure 13) – in this
case, however, the output contains two degenerate linear components and the animation is somewhat
slower (see Table 5 for a speed comparison).

4.3 The case of the ellipse and the hyperbola
Table 5 already prognosed the bad news about the case of ellipses and hyperbolas. Indeed, an alge-
braic geometry approach was in our research work not yet possible because of the too high amount of
computations.

We give a brief overview about how we tried to handle the difficulties. First of all, ellipses and
hyperbolas have the same equations if they are defined by their foci A and B and a circumpoint C.
We assume this setup because GeoGebra’s user interface supports this kind of synthetic construction
of conics (Fig. 14).
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No. Name Toolbar Icon Description

1 Point O
2 Point V
3 Vector v Vector(O, V )
4 Point D1

5 Point D2

6 Line d Line D1, D2

7 Point F
8 Parabola p Parabola with focus F and directrix d

9 Point T Point on p
10 Point S T − v

11 Line m Tangent to p through T

12 Point S ′ S mirrored at m
13 Ray r′ Ray through T , S ′

14 Implicit Curve c Envelope(r′, T )
15 Segment r Segment S, T
16 Point S ′′ S ′ mirrored at T
17 Ray r′′ Ray through T, S ′′

Table 4: Easy construction of caustics of a parabola, the light source is at infinite point

Figure 13: A caustic of a parabola, the light source is at infinite distance (“mouse only” version)
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Conic Finite Infinite Infinite
(“mouse only”) (via vector)

Circle 14.3 4.0 11.5
Parabola 11.6 1.6 7.2
Hyperbola/Ellipse – – –

Table 5: Benchmarking animation speed (FPS) of caustics of conics, according to the distance of light
source

Figure 14: Ellipses and hyperbolas may be indistinguishable in the algebraic geometry approach
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We would like to algebraically express the coordinates of P . We tried two strategies to describe
the coordinates px and py:

1. Set up an equation system that contains all required constraints. Use these equations in the
complete equation system also, when additional constraints are added (for example, the ones
that describe the tangents and mirror images).

2. Set up the same system, but use elimination to obtain one equation (a union of the two conics,
that is, a quartic). Remove the other constraints, and keep only the quartic one which is obtained
after elimination. Use only the quartic, and add eventually additional constraints for the “rest”
of construction (for example, the ones that describe the tangents and mirror images).

These methods are mathematically equivalent, but in the further computation steps, they may be of
different complexity.

In fact, the geometric setup can be expressed by using the following equations:

AC2 = (ax − cx)
2 + (ay − cy)

2,

BC2 = (bx − cx)
2 + (by − cy)

2,

AP 2 = (ax − px)
2 + (ay − py)

2,

BP 2 = (bx − px)
2 + (by − py)

2,

AP ±BP = AC ±BC,

where the last operations decide if an ellipse (+) or a hyperbola (−) is observed. But, as stated above,
these operations will have no effect on the obtained output. So we will use “+” from now on.

After several attempts with the first strategy, it can be learned that the number of variables may be
too high for the underlying CAS. So we tried to use the second strategy by writing a short program
in Giac that obtains the quartic in parameters of ax, ay, bx, by, cx and cy. We needed to eliminate all
helper variables from the equation system by using this code:

>> poly:=eliminate([ac^2=(a_x-c_x)^2+(a_y-c_y)^2,
bc^2=(b_x-c_x)^2+(b_y-c_y)^2,
ap^2=(a_x-p_x)^2+(a_y-p_y)^2,
bp^2=(b_x-p_x)^2+(b_y-p_y)^2,
ap+bp=ac+bc],
[ac,bc,ap,bp])

>> print(poly)

Giac gave the following answer (reasonably quickly):

poly:[c_x^4*a_y^4
-4*a_x*c_x^3*a_y^3*c_y
+6*a_x^2*c_x^2*a_y^2*c_y^2
-4*a_x^3*c_x*a_y*c_y^3
+a_x^4*c_y^4
...
-4*c_y*b_x^2*b_y*p_y^4
-4*a_x^2*b_y^2*p_y^4
+8*a_x*c_x*b_y^2*p_y^4
-4*c_x^2*b_y^2*p_y^4]
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Figure 15: Geometric setup for the tangent of an ellipse/hyperbola

The answer consisted of 1171 terms and more than 20000 characters, so we omit showing the
output here.4 We translated Giac’s output into Java and added it explicitly in GeoGebra’s source
code.

Now we are ready to formalize the tangent of an ellipse (or hyperbola) in a similar way as shown
in equations (1)–(5) for the case of a parabola, that is, the “rest”. See Figure 15.

The following properties need to be set up:

1. A, T and B′ are collinear.

2. M is the midpoint of BB′.

3. BT = B′T .

4. A, B and T should not be collinear.

Similarly, we can set up 5 equations (two for the midpoint), similarly to (1)–(5). Here we empha-
size again that the last property is required to avoid the degenerate case M = T .

As mentioned above, the equation system is still too heavy for elimination, if we add some other
equations that describe the reflection. So we need to give up studying the caustics of an ellipse/hyper-
bola by using algebraic equations at this point.

Nevertheless, at least, we are able to obtain some beautiful curves that are created by an arbitrary
free point E and its mirror image E ′ about the family of tangents t of a given ellipse/hyperbola.

Figure 16 shows a union of two curves that are algebraically one curve, a degree 8 curve. This
consist of a larger red geometric component (according to the ellipse) and a smaller yellow one (ac-
cording to the hyperbola). In fact, GeoGebra Discovery computes an additional algebraic component
as well, a degree 12 curve (see Figure 17). Despite the high degrees, the relatively fast computa-

4The full output can be found in h t t p s : / / g i t h u b . c o m / k o v z o l / g e o g e b
r a / c o m m i t / 8 6 5 4 b 0 e 1 7 4 4 6 c 5 3 c 3 f c 2 f 5 1 a b a 6 0 6 d 1 f 8 7 e b 7 1 74, in the file
common/src/main/java/org/geogebra/common/kernel/algos/AlgoEllipseHyperbolaFociPoint.java.
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Figure 16: A union of two curves

tion time (animation is between 3.43 and 4.38 FPS5) may give some hope that this method has not
yet found its extents and some further improvement could allow us to visualize the caustics of an
ellipse/hyperbola in a similar way.

5 Conclusions
First, we give some technical remarks. We learned that fast computations may require suitable geo-
metric definitions and a “lucky” way of algebraization. Maybe it is surprising, but avoiding degen-
eracy can be crucial in certain envelope computations. Since elimination is slow in general (double
exponential in the number of variables), a simplification of the figure may play an important role.
Finally, exploiting important properties from elementary geometry may also be helpful.

From the educational point of view, we strongly believe that visualization of optics can be a fruit-
ful direction in STEAM projects. Unfortunately, algebraic curves of higher degrees are sometimes
completely ignored or underrated in schools. It is clear that several polynomial curves of higher de-
grees “live among us”, and their computer based visualization strengthens the validity to find them a
place in the school curriculum as well. Even more so, if the visualization process consists of just a
couple of mouse clicks in a popular free software tool!

Higher degree curves have a rich geometry. The same definition with different parameters may re-

5See https://prover-test.geogebra.org/job/GeoGebra_Discovery-art-plottertest/105/artifact/
fork/geogebra/test/scripts/benchmark/art-plotter/html/all.html for a recent benchmark on a set of test
cases – our latest example is called ellipse-point-mirror-tangent*.ggb.
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Figure 17: A union of two curves with the extra component

sult in completely different curves. This may encourage young learners to perform self-explorations,
on the one hand, because of seeking for beauty, and on the other hand, to discover the challenging
(and non-trivial) world of algebraic geometry. Here further steps could be, for example, factorization
of the obtained polynomials, removing degenerate components, or self-studying geometric properties.

At CADGME 2010 Botana closed his plenary talk with the rhetorical question after showing the
huge and exotic coefficients of a mechanically obtained algebraic curve:

“Should we hide this (kind of) result to students?”

An appropriate answer today in 2022 may be the following: “We cannot.” Science is proving more
complicated than we ever thought. But is not complexity beautiful and fascinating?
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